JAMB - Mathematics (2019 - No. 24)

If \(y = 6x^3 + 2x^{-2} - x^{-3}\), find \(\frac{\mathrm d y}{\mathrm d x}\).
\(\frac{\mathrm d y}{\mathrm d x} = 15x^2 - 4x^{-2} - 3x^{-2}\)
\(\frac{\mathrm d y}{\mathrm d x} = 6x + 4x^{-1} - 3x^{-4}\)
\(\frac{\mathrm d y}{\mathrm d x} = 18x^2 - 4x^{-3} + 3x^{-4}\)
\(\frac{\mathrm d y}{\mathrm d x} = 12x^2 + 4x^{-1} - 3x^{-2}\)

Explanation

\(y = 6x^3 + 2x^{-2} - x^{-3}\)

\(\frac{\mathrm d y}{\mathrm d x} = 18x^2 - 4x^{-3} + 3x^{-4}\)

Comments (0)

Advertisement