JAMB - Mathematics (2019 - No. 1)
Make q the subject of the formula in the equation \(\frac{mn}{a^2} - \frac{pq}{b^2} = 1\)
\(q = \frac{b^2(mn - a^2)}{a^2 p}\)
\(q = \frac{m^2 n - a^2}{p^2}\)
\(q = \frac{mn - 2b^2}{a^2}\)
\(q = \frac{b^2 (n^2 - ma^2)}{n}\)
Explanation
\(\frac{mn}{a^2} - \frac{pq}{b^2} = 1\)
\(\frac{mn}{a^2} - 1 = \frac{pq}{b^2}\)
\(\frac{mn - a^2}{a^2} = \frac{pq}{b^2}\)
\(pq = \frac{b^2 (mn - a^2)}{a^2}\)
\(q = \frac{b^2(mn - a^2)}{a^2 p}\)
Comments (0)
