JAMB - Mathematics (2014 - No. 15)

What is the solution of \(\frac{x - 5}{x + 3} < -1\)?
-3 < x < 1
x < -3 or x > 1
-3 < x < 5
x < -3 or x > 5

Explanation

Consider the range -3 < x < -1

= { -2, -1, 0}, for instance

When x = -2,

\(\frac{-2 - 5}{-2 + 3} < -1\)

\(\frac{-7}{1} < -1\)

When x = -1,

\(\frac{-1 - 5}{-1 + 3} < -1\)

\(\frac{-6}{2} < -1\)

= -3 < -1

When x = 0,

\(\frac{0 - 5}{0 + 3} < -1\)

\(\frac{- 5}{3} < -1\)

Hence -3 < x < 1

Comments (0)

Advertisement