JAMB - Mathematics (2012 - No. 22)
Given that I3 is a unit matrix of order 3, find |I3|
-1
O
1
2
Explanation
Recall that a unit matrice is a diagonal matrix in which the elements in the leading diagonal is unity. Therefore,
I3 = \(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\)
I3 = \(+1\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} - 0\begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} + 0 \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} \)
I3 = +1(1 - 0) - 0(0 - 0) + 0(0 - 0)
= 1(1)
= 1
I3 = \(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\)
I3 = \(+1\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} - 0\begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} + 0 \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} \)
I3 = +1(1 - 0) - 0(0 - 0) + 0(0 - 0)
= 1(1)
= 1
Comments (0)
