JAMB - Mathematics (2011 - No. 36)

Find \(\int\) cos4 x dx
\(\frac{3}{4}\) sin 4x + k
-\(\frac{1}{4}\) sin 4x + k
-\(\frac{3}{4}\) sin 4x + k
\(\frac{1}{4}\) sin 4x + k

Explanation

\(\int\) cos4 x dx

let u = 4x

\(\frac{dy}{dx}\) = 4

dx = \(\frac{dy}{4}\)

\(\int\)cos u. \(\frac{dy}{4}\) = \(\frac{1}{4}\)\(\int\)cos u du

= \(\frac{1}{4}\) sin u + k

= \(\frac{1}{4}\) sin4x + k

Comments (0)

Advertisement