JAMB - Mathematics (2010 - No. 43)

If y = x sinx, find \(\frac{dy}{dx}\)
sin x - x cosx
sinx + x cosx
sinx - cosx
sinx + cosx

Explanation

If y = x sinx, then

Let u = x and v = sinx

\(\frac{du}{dx}\) = 1 and \(\frac{dv}{dx}\) = cosx

Hence by the product rule,

\(\frac{dy}{dx}\) = v \(\frac{du}{dx}\) + u\(\frac{dv}{dx}\)

= (sin x) x 1 + x cosx

= sinx + x cosx

Comments (0)

Advertisement