JAMB - Mathematics (2010 - No. 42)

If cot\(\theta\) = \(\frac{8}{15}\), where \(\theta\) is acute, find sin\(\theta\)
\(\frac{8}{17}\)
\(\frac{15}{17}\)
\(\frac{16}{17}\)
\(\frac{13}{17}\)

Explanation

cot\(\theta\) = \(\frac{1}{\cos \theta}\)

= \(\frac{8}{15}\)(given)

tan\(\theta\) = \(\frac{15}{8}\)

By Pythagoras' theorem,

x\(^2\) = 15\(^2\) + 8\(^2\)

x\(^2\) = 225 + 64 = 289

x = \(\sqrt{289}\)

= 17

Hence sin\(\theta\) = \(\frac{15}{x}\)

= \(\frac{15}{17}\)

Comments (0)

Advertisement