JAMB - Mathematics (2008 - No. 12)
Make Q the subject of formula when \(L=\frac{4}{3}M\sqrt{PQ}\)
\(\frac{9L^2}{16M^2P}\)
\(\frac{3L}{4M\sqrt{P}}\)
\(\frac{\sqrt{3L}}{4MP}\)
\(\frac{3L^2}{16M^2}P\)
Explanation
\(L=\frac{4}{3}M\sqrt{PQ}\\
=\frac{3}{4M} \times L = \sqrt{PQ}\\
=\left(\frac{3L}{4M}\right)^2=(\sqrt{PQ})^2\\
=\frac{9L^2}{16M^2}=PQ\\
=Q=\frac{9L^2}{16M^2 P}\)
=\frac{3}{4M} \times L = \sqrt{PQ}\\
=\left(\frac{3L}{4M}\right)^2=(\sqrt{PQ})^2\\
=\frac{9L^2}{16M^2}=PQ\\
=Q=\frac{9L^2}{16M^2 P}\)
Comments (0)


