JAMB - Mathematics (2006 - No. 10)
Differentiate (x\(^2\) - \(\frac{1}{x}\))\(^2\) with respect to x
4x3 - 4x - 2/x
4x3 - 2 + 2/x3
4x3 - 2 - 2/x3
4x3 - 3x + 2/x
Explanation
y = (x\(^2\) - \(\frac{1}{x}\))\(^2\)
y = (x\(^2\) - \(\frac{1}{x}\))(x\(^2\) - \(\frac{1}{x}\))
y = x\(^4\) - x - x + 1/x2
y = x\(^4\) - 2x + 1/x2
y = x\(^4\) - 2x + x-2
dy/dx = 4x\(^3\) - 2 - 2x\(^-3\)
= 4x\(^3\) - 2 - \(\frac{2}{x^3}\)
y = (x\(^2\) - \(\frac{1}{x}\))(x\(^2\) - \(\frac{1}{x}\))
y = x\(^4\) - x - x + 1/x2
y = x\(^4\) - 2x + 1/x2
y = x\(^4\) - 2x + x-2
dy/dx = 4x\(^3\) - 2 - 2x\(^-3\)
= 4x\(^3\) - 2 - \(\frac{2}{x^3}\)
Comments (0)
