JAMB - Mathematics (2003 - No. 31)
Explanation
To solve the equation \(^{n}P_{3} - 6(^{n}C_{4}) = 0\), we start by using the formulas for permutations and combinations:
\(^{n}P_{r} = \frac{n!}{(n-r)!}\)
\(^{n}C_{r} = \frac{n!}{r!(n-r)!}\)
### Step 1: Substitute the formulas
For \(^{n}P_{3}\):
\(^{n}P_{3} = \frac{n!}{(n-3)!}\)
For \(^{n}C_{4}\):
\(^{n}C_{4} = \frac{n!}{4!(n-4)!}\)
### Step 2: Substitute into the equation
The equation becomes:
\(\frac{n!}{(n-3)!} - 6 \left(\frac{n!}{4!(n-4)!}\right) = 0\)
### Step 3: Factor out \(n!\)
Factoring \(n!\) from both terms gives:
\(n! \left(\frac{1}{(n-3)!} - \frac{6}{4!(n-4)!}\right) = 0\)
Since \(n! \neq 0\), we can simplify to:
\(\frac{1}{(n-3)!} - \frac{6}{4!(n-4)!} = 0\)
### Step 4: Simplify the second term
Recall that \(4! = 24\), so:
\(\frac{6}{4!(n-4)!} = \frac{6}{24(n-4)!} = \frac{1}{4(n-4)!}\)
### Step 5: Rewrite the equation
The equation now is:
\(\frac{1}{(n-3)!} - \frac{1}{4(n-4)!} = 0\)
### Step 6: Multiply through by \(4(n-3)!(n-4)!\)
Multiplying through by \(4(n-3)!(n-4)!\) gives:
\(4(n-4)! - (n-3)! = 0\)
### Step 7: Rewrite \((n-3)!\)
Recall that \((n-3)! = (n-3)(n-4)!\), so:
\(4(n-4)! - (n-3)(n-4)! = 0\)
Step 8: Factor out \((n-4)!\)
Factoring out \((n-4)!\) gives:
\((n-4)! \left(4 - (n-3)\right) = 0\)
Since \((n-4)! \neq 0\), we have:
\(4 - (n-3) = 0\)
Solving for \(n\):
\(n - 3 = 4 \implies n = 7\)
The value of \(n\) is:
\(\boxed{7}\)
Comments (0)
