JAMB - Mathematics (2003 - No. 24)
Evaluate \(\int^{3} _{2}(x^2 - 2x)dx\)
4
2
4/3
1/3
Explanation
\(\int^{3} _{2}(x^2 - 2x)\)dx
=\(\left[\frac{x^3}{3}-\frac{2x^2}{2}\right ]^{2}_{3}\\\left[\frac{x^3}{3}-x^2 + C\right ]^{2}_{3}\\\left[\frac{3^3}{3}-3^2 + C \right ]-\left[\frac{2^3}{3}-2^2 + C \right ]\\9-9-\left[\frac{8}{3}-4 \right ]\)
=\(\frac{-8}{3}\) + 4 = \(\frac{4}{3}\)
Comments (0)
