JAMB - Mathematics (1999 - No. 25)
Evaluate: \(\int^{z}_{0}(sin x - cos x) dx \hspace{1mm}
Where\hspace{1mm}letter\hspace{1mm}z = \frac{\pi}{4}. (\pi = pi)\)
Where\hspace{1mm}letter\hspace{1mm}z = \frac{\pi}{4}. (\pi = pi)\)
\(\sqrt{2 +1}\)
\(\sqrt{2 }-1\)
\(-\sqrt{2 }-1\)
\(1-\sqrt{2}\)
Explanation
\(\int_{0}^{z} (\sin x - \cos x) \, dx\)
where \( z = \frac{\pi}{4} \), we have:
\(\int_{0}^{\frac{\pi}{4}} (\sin x - \cos x) \, dx = \left[-\cos x - \sin x\right]_{0}^{\frac{\pi}{4}}\)
Evaluating at the bounds gives:
\(-\sqrt{2} - (-1) = -\sqrt{2} + 1\)
Thus, the value of the integral is:
\(\int_{0}^{\frac{\pi}{4}} (\sin x - \cos x) \, dx = 1 - \sqrt{2}\)
Comments (0)
