JAMB - Mathematics (1998 - No. 5)

Find the value of k if \(\frac{k}{\sqrt{3} + \sqrt{2}}\) = k\(\sqrt{3 - 2}\)
3
2
\(\sqrt{3}\)
\(\sqrt 2\)

Explanation

\(\frac{k}{\sqrt{3} + \sqrt{2}}\) = k\(\sqrt{3 - 2}\)

\(\frac{k}{\sqrt{3} + \sqrt{2}}\) x \(\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}\)

= k\(\sqrt{3 - 2}\)

= k(\(\sqrt{3} - \sqrt{2}\))

= k\(\sqrt{3 - 2}\)

= k\(\sqrt{3}\) - k\(\sqrt{2}\)

= k\(\sqrt{3 - 2}\)

k2 = \(\sqrt{2}\)

k = \(\frac{2}{\sqrt{2}}\)

= \(\sqrt{2}\)

Comments (0)

Advertisement