JAMB - Mathematics (1998 - No. 28)

Differentiate \(\frac{x}{cosx}\) with respect to x
1 + x sec x tan x
1 + sec2 x
cos x + x tan x
x sec x tan x + secx

Explanation

let y = \(\frac{x}{cosx}\) = x sec x ( since \(\frac{1}{cosx}\) = sec x )

let u =  x, v = sec x

\(\frac{dy}{dx}\) = U\(\frac{dy}{dx}\) + V\(\frac{du}{dx}\)

\(\frac{dy}{dx}\) = x [secx tanx] + secx

Therefore,  \(\frac{dy}{dx}\)\(\frac{x}{cosx}\) = x secx tanx + secx

Comments (0)

Advertisement