JAMB - Mathematics (1997 - No. 11)
Find the minimum value of X2 - 3x + 2 for all real values of x
-\(\frac{1}{4}\)
-\(\frac{1}{2}\)
\(\frac{1}{4}\)
\(\frac{1}{2}\)
Explanation
y = X2 - 3x + 2, \(\frac{dy}{dx}\) = 2x - 3
at turning pt, \(\frac{dy}{dx}\) = 0
∴ 2x - 3 = 0
∴ x = \(\frac{3}{2}\)
\(\frac{d^2y}{dx^2}\) = \(\frac{d}{dx}\)(\(\frac{d}{dx}\))
= 270
∴ ymin = 2\(\frac{3}{2}\) - 3\(\frac{3}{2}\) + 2
= \(\frac{9}{4}\) - \(\frac{9}{2}\) + 2
= -\(\frac{1}{4}\)
at turning pt, \(\frac{dy}{dx}\) = 0
∴ 2x - 3 = 0
∴ x = \(\frac{3}{2}\)
\(\frac{d^2y}{dx^2}\) = \(\frac{d}{dx}\)(\(\frac{d}{dx}\))
= 270
∴ ymin = 2\(\frac{3}{2}\) - 3\(\frac{3}{2}\) + 2
= \(\frac{9}{4}\) - \(\frac{9}{2}\) + 2
= -\(\frac{1}{4}\)
Comments (0)
