JAMB - Mathematics (1995 - No. 32)

Find the area bounded by the curve y = 3x\(^2\) - 2x + 1, the ordinates x = 1 and x = 3 and the x-axis.
24
22
21
20

Explanation

\(\frac{\mathrm d y}{\mathrm d x} = 3x^{2} - 2x + 1\)

\(y = \int_{1} ^{3} (3x^{2} - 2x + 1) \mathrm d x\)

\(y = [x^{3} - x^{2} + x]_{1} ^{3}\)

= \([3^{3} - 3^{2} + 3] - [1^{3} - 1^{2} + 1]\)

= \(21 - 1 = 20\)

Comments (0)

Advertisement