JAMB - Mathematics (1995 - No. 12)

Find T in terms of K, Q, and S if S = 2r\(\sqrt{\pi(QT + K)}\)
\(\frac{S^2}{2 \pi r^2Q} - \frac{k}{Q}\)
\(\frac{S^2}{2 \pi r^2Q}\) - k
\(\frac{S^2}{4 \pi r^2Q} - \frac{k}{Q}\)
\(\frac{s^2}{4 \pi r^2Q}\)

Explanation

\(\frac{s^2}{4r^2}\) = \(\pi\)(QT + K) 

\(\frac{s^2}{4r^2}\) - k\(\pi\) = QT\(\pi\)


T = \(\frac{s^2}{4Q\pi r^2}\) - \(\frac{k}{Q}\)

Comments (0)

Advertisement