JAMB - Mathematics (1993 - No. 5)
Solve for y in the equation 10\(^y\) x 5\(^{(2y - 2)}\) x 4\(^{(y - 1)}\) = 1
\(\frac{3}{4}\)
\(\frac{5}{4}\)
\(\frac{2}{3}\)
5
Explanation
10\(^y\) x 5\(^{(2y - 2)}\) x 4\(^{(y - 1)}\) = 1
but 10\(^y\) = (5 x 2)\(^y\) = 5\(^y\) x 2\(^y\)
= (Law of indices)
5\(^y\) x 2\(^y\) x 5\(^{(2y - 2)}\) x 4\(^{(y - 1)}\) = 1
but 4\(^{(y - 1)}\) = 2\(^{2(y - 1)}\)
= 2\(^{2y - 2}\) (Law of indices)
5\(^y\) x 5\(^{(2y -2)}\) x 2\(^{(2y- 2)}\) x 2\(^y\) = 1
5\(^{(3y -2)}\) x 2\(^y\) x 2\(^{(2y -2)}\) = 1
= 5\(^{(3y -2)}\) x 2\(^{(3y -2)}\) = 1
But a\(^o\) = 1
10\(^{(3y -2)}\) = 10\(^o\)
3y - 2 = 0
∴ y = \(\frac{2}{3}\)
but 10\(^y\) = (5 x 2)\(^y\) = 5\(^y\) x 2\(^y\)
= (Law of indices)
5\(^y\) x 2\(^y\) x 5\(^{(2y - 2)}\) x 4\(^{(y - 1)}\) = 1
but 4\(^{(y - 1)}\) = 2\(^{2(y - 1)}\)
= 2\(^{2y - 2}\) (Law of indices)
5\(^y\) x 5\(^{(2y -2)}\) x 2\(^{(2y- 2)}\) x 2\(^y\) = 1
5\(^{(3y -2)}\) x 2\(^y\) x 2\(^{(2y -2)}\) = 1
= 5\(^{(3y -2)}\) x 2\(^{(3y -2)}\) = 1
But a\(^o\) = 1
10\(^{(3y -2)}\) = 10\(^o\)
3y - 2 = 0
∴ y = \(\frac{2}{3}\)
Comments (0)
