JAMB - Mathematics (1993 - No. 11)

Make x the subject of the relation \(\frac{1 + ax}{1 - ax}\) = \(\frac{p}{q}\)
\(\frac{p + q}{a(p - q)}\)
\(\frac{p - q}{a(p + q)}\)
\(\frac{p - q}{apq}\)
\(\frac{pq}{a(p - q)}\)

Explanation

\(\frac{1 + ax}{1 - ax}\) = \(\frac{p}{q}\) by cross multiplication,

q(1 + ax) = p(1 - ax)

q + qax = p - pax

qax + pax = p - q

∴ x = \(\frac{p - q}{a(p + q)}\)

Comments (0)

Advertisement