JAMB - Mathematics (1992 - No. 22)
p = \(\begin{vmatrix} x & 3 & 0 \\ 2 & y & 3\\ 4 & 2 & 4 \end{vmatrix}\)
Q = \(\begin{vmatrix} x & 2 & z \\ 3 & y & 2\\ 0 & 3 & z \end{vmatrix}\)
PQ is equivalent to
Q = \(\begin{vmatrix} x & 2 & z \\ 3 & y & 2\\ 0 & 3 & z \end{vmatrix}\)
PQ is equivalent to
PPT
pp-1
qp
pp
Explanation
p = \(\begin{vmatrix} 0 & 3 & 0 \\ 2 & 1 & 3\\ 4 & 2 & 2 \end{vmatrix}\)
Q = \(\begin{vmatrix} 0 & 2 & 4 \\ 3 & 1 & 2\\ 0 & 3 & 2 \end{vmatrix}\) = pT
pq = ppT
Q = \(\begin{vmatrix} 0 & 2 & 4 \\ 3 & 1 & 2\\ 0 & 3 & 2 \end{vmatrix}\) = pT
pq = ppT
Comments (0)
