JAMB - Mathematics (1988 - No. 4)

If x varies inversely as the cube root of y and x = 1 when y = 8, find y when x = 3
\(\frac{1}{3}\)
\(\frac{2}{3}\)
\(\frac{8}{27}\)
\(\frac{4}{9}\)

Explanation

\(x \propto \frac{1}{\sqrt[3]{y}} \implies x = \frac{k}{\sqrt[3]{y}}\)

When y = 8, x = 1

\(1 = \frac{k}{\sqrt[3]{8}} \implies 1 = \frac{k}{2}\)

\(k = 2\)

\(\therefore x = \frac{2}{\sqrt[3]{y}}\)

When x = 3,

\(3 = \frac{2}{\sqrt[3]{y}} \implies \sqrt[3]{y} = \frac{2}{3}\)

\(y = (\frac{2}{3})^{3} = \frac{8}{27}\)

Comments (0)

Advertisement