JAMB - Mathematics (1987 - No. 14)

If P = \(\frac{\frac{2}{3}({1 - r^2})}{n^2}\), find n when r = \(\sqrt{\frac{1}{3}}\) and p = 1
\(\frac{3}{2}\)
\(\frac{1}{3}\)
3
\(\frac{2}{3}\)

Explanation

If P = \(\frac{\frac{2}{3}({1 - r^2})}{n^2}\), find n when r = \(\sqrt{\frac{1}{3}}\) and p = 1

p = \(\frac{\frac{2}{3}({1 - r^2})}{n^2}\) when r = \(\sqrt{\frac{1}{3}}\) and p = 1

1 =  \(\frac{\frac{2}{3}({1 - (\sqrt{\frac{1}{3}})^2})}{n^2}\) 

\(n^2\) = \(\frac{2}{3}(1 - \frac{1}{3}\))

\(n^2\) = \(\frac{2 \times 2}{3 \times 3}\)

= \(\frac{4}{9}\)

n = \(\sqrt{\frac{4}{9}}\)

= \(\frac{2}{3}\)

Comments (0)

Advertisement