JAMB - Mathematics (1985 - No. 11)
Find the values of p for which the equation x\(^2\) - (p - 2)x + 2p + 1 = 0
(21, 0)
(0, 12)
(1, 2)
(3, 4)
(4, 5)
Explanation
Equal roots implies b\(^2\) - 4ac = 0
a = 1, b = - (p - 2), c = 2p + 1
[-(p - 2)]\(^2\) - 4 x 1 x (2p + 1) = 0
p\(^2\) - 4p + 4 - 4(2p + 1) = 0
p\(^2\) - 4p = 4 - 8p - 4 = 0
p\(^2\) - 12p = 0
p(p - 12) = 0
p = 0 or 12
a = 1, b = - (p - 2), c = 2p + 1
[-(p - 2)]\(^2\) - 4 x 1 x (2p + 1) = 0
p\(^2\) - 4p + 4 - 4(2p + 1) = 0
p\(^2\) - 4p = 4 - 8p - 4 = 0
p\(^2\) - 12p = 0
p(p - 12) = 0
p = 0 or 12
Comments (0)
