JAMB - Mathematics (1982 - No. 6)
The solution of the quadratic equation bx\(^2\) + cx + a = 0 is given by
x = b \(\pm\) \(\frac{\sqrt{b^2 - 4ac}}{2a}\)
x = c \(\pm\) \(\frac{\sqrt{b^2 - 4ab}}{2b}\)
x = -c \(\pm\) \(\frac{\sqrt{c^2 - 4ab}}{2b}\)
x = -b \(\pm\) \(\frac{\sqrt{b^2 - 4ac}}{2b}\)
Explanation
bx\(^2\) + cx + a = 0
a = b; b = c; c = a
x = -b \(\pm\) \(\frac{\sqrt{b^2 - 4ac}}{2a}\)
x = -c \(\pm\) \(\frac{\sqrt{c^2 - 4ab}}{2b}\)
a = b; b = c; c = a
x = -b \(\pm\) \(\frac{\sqrt{b^2 - 4ac}}{2a}\)
x = -c \(\pm\) \(\frac{\sqrt{c^2 - 4ab}}{2b}\)
Comments (0)
