JAMB - Mathematics (1981 - No. 20)

Simplify \(\frac{\sqrt{2}}{\sqrt{3} - \sqrt{2}}\) - \(\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\)
2\(\sqrt{2} - \sqrt{3}\)
3(\(\sqrt{6}\) - 1)
\(\sqrt{6}\) - 3
-\(\frac{1}{2}\)
\(\frac{-\sqrt{3}}{\sqrt{2} - \sqrt{2}}\)

Explanation

\(\frac{\sqrt{2}}{\sqrt{3} - \sqrt{2}}\) - \(\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\)

\(\frac{\sqrt{2}}{\sqrt{3} - \sqrt{2}}\) = \(\frac{\sqrt{2}}{\sqrt{3}}\) - \(\frac{\sqrt{3}}{\sqrt{2}}\)

\(\frac{\sqrt{3} + \sqrt{2}}{3 + \sqrt{2}}\) = \(\sqrt{6}\) + 2

\(\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\) = \(\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\) x \(\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}\)

= 5 - 2\(\sqrt{6}\)

\(\sqrt{6}\) + 2 - (5 - 2 \(\sqrt{6}\)) = \(\sqrt{6}\) + 2 - 5 + 2\(\sqrt{6}\)

= 3\(\sqrt{6}\) - 3

= 3(\(\sqrt{6}\) - 1)

Comments (0)

Advertisement