JAMB - Mathematics (1980 - No. 24)

(\(\frac{x^a}{x^b}\))a + b = (\(\frac{x^{a + b}}{x^{a - b}}\))\(\frac{a^2}{b}\)
x-a2
xb2
xa2 - b2
\(\frac{1}{x^{a2 + b2}}\)
xb2 - a2

Explanation

(\(\frac{x^a}{x^b}\))a + b = (\(\frac{x^{a2 + ab}}{x^{b2 + ab}}\))

= xa2 - b2

{\(\frac{xa + b}{xa - b}\)} = xa + b - a + b

= x2b

= x2a

= xa2 - b2

= xb2 \(\div \) a2 = \(\frac{1}{x^\text a2 + b2}\)

Comments (0)

Advertisement