JAMB - Mathematics (1979 - No. 34)
What is the greatest straight line distance between two vertices (corners) of a cube whose sides are 2239cm long?
\(\sqrt{2239cm}\)
\(\sqrt{2}\) x 2239cm
\(\frac{\sqrt{3}}{2}\) 2239cm
\(\sqrt{3}\) x 2239cm
4478cm
Explanation
x = \(\sqrt{-2239^2 + 2239^2}\)
= -\(\sqrt{10026242}\)
= 3166.42
y = -\(\sqrt{10026242 + 5013121}\)
= -\(\sqrt{15039363}\)
= 3878
= \(\sqrt{3}\) x 2239
= -\(\sqrt{10026242}\)
= 3166.42
y = -\(\sqrt{10026242 + 5013121}\)
= -\(\sqrt{15039363}\)
= 3878
= \(\sqrt{3}\) x 2239
Comments (0)
