JAMB - Mathematics (1978 - No. 38)

Simplify \(\frac{(a - \frac{1}{a}) (a^{\frac{4}{3}} + \frac{1}{a^{\frac{2}{3}}})}{a^2 - (\frac{1}{a})^2}\)
a\(\frac{2}{3}\)
a-\(\frac{1}{3}\)
\(a^{2}\) + 1
a
a\(\frac{1}{3}\)

Explanation

\(\frac{(a - \frac{1}{a}) (a^{\frac{4}{3}} + \frac{1}{a^{\frac{2}{3}}})}{a^2 - \left(\frac{1}{a}\right)^2}\)
\( = \frac{(a - \frac{1}{a}) \left(a^{\frac{4}{3}} + \frac{1}{a^{\frac{2}{3}}}\right)}{\left(a - \frac{1}{a}\right)\left(a + \frac{1}{a}\right)} \)
\(= \frac{a^{\frac{4}{3}} + \frac{1}{a^{\frac{2}{3}}}}{a + \frac{1}{a}}\)
\(= \frac{\frac{a^{2} + 1}{a^{\frac{2}{3}}}}{\frac{a^2 + 1}{a}}\)
\(= \frac{1}{a^{\frac{2}{3}}} \cdot a\)
\(= a^{1 - \frac{2}{3}} = a^{\frac{1}{3}}\)
\(\boxed{a^{\frac{1}{3}}}\)

Comments (0)

Advertisement